## 3 Phase AC Power Sources

With a unique feature set and competitive price point, our 400XAC Series provides $3 \varnothing$ AC power in a single box. Our exclusive SmartCONFIG feature allows you to switch from $1 \varnothing$ to $3 \varnothing$ or DC output with the push of a button. This maximizes your investment while giving you the AC power that your application needs. The 460XAC is a 6 kVA AC power source.

## Features

- Exclusive SmartCONFIG feature allows for push button switch of $1 \varnothing, 3 \varnothing$, or DC output

Single phase input power requirements

- 50 built-in memory locations with 9 test steps
- Built-in power factor correction (PFC)
- Advanced metering circuits monitor voltage, current, peak current, power, apparent power, reactive power, power factor, and crest factor
- External voltage sensing for accurate metering
- Transient feature simulates voltage variations, brownouts, and transient voltage conditions
- Programmable starting and ending angle of the output sine wave
- Rack mount handle kit included


## Standard

- USB/RS-232 Interface

Options

- GPIB Interface

Ethernet Interface


## Applicable Industries



Aerospace


Appliance


Laboratory



Specifications - 460XAC

| Poly-phase mode (3Ø4W) for per phase measurement |  |  | 460XAC |
| :---: | :---: | :---: | :---: |
| Current (RMS) | Range | L | $0.005 \mathrm{~A} \sim 2.400 \mathrm{~A}$ |
|  |  | H | $2.00 \mathrm{~A} \sim 26.00 \mathrm{~A}$ |
|  | Accuracy | L | $\pm$ ( $1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ |
|  |  |  | $\pm$ ( $1 \%$ of reading +5 counts) at $501-1000 \mathrm{~Hz}$, CF $<1.5$ and Current (peak) $\leq 7.2 \mathrm{~A}$ |
|  |  | H | $\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ |
|  |  |  | $\begin{gathered} \pm(1 \% \text { of reading }+5 \text { counts at } 501-1000 \mathrm{~Hz}, \\ \mathrm{CF}<1.5 \text { and Current }(\text { peak }) \leq 55.2 \mathrm{~A} \end{gathered}$ |
|  |  |  | 0.0 A~76.0 A |
| Current (peak) | Range |  | $\pm$ (1\% of reading +5 counts) at $40.0-70.0 \mathrm{~Hz}$ |
|  | Accuracy |  | $\pm(1.5 \%$ of reading +10 counts) at $70.1-500 \mathrm{~Hz}$ |
|  |  |  | $\pm(1.5 \%$ of reading +10 counts) at $501-1000 \mathrm{~Hz}$ and CF $<1.5$ |
| Power | Range | L | 0.0 W $\sim 240.0$ W |
|  |  | H | $200 \mathrm{~W} \sim 2600 \mathrm{~W}$ |
|  | Accuracy | L | $\pm$ ( $2 \%$ of reading +15 counts) at $40.0-500 \mathrm{~Hz}$ and PF $\geq 0.2$ |
|  |  | H | $\pm(2 \%$ of reading +30 counts) at $501-1000 \mathrm{~Hz}$ and PF $\geq 0.5$ |
|  |  |  | $\pm$ ( $2 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ and PF $\geq 0.2$ |
|  |  |  | $\pm$ ( $2 \%$ of reading +15 counts) at $501-1000 \mathrm{~Hz}$ and PF $\geq 0.5$ |
| Power Factor | Range |  | 0-1.000 |
|  | Accuracy |  | W / VA, Calculated and displayed to three significant digits |
| Power Apparent (VA) | Range | L | 0.0 VA 240.0 VA |
|  |  | H | 200 VA~2600 VA |
|  | Accuracy |  | $\mathrm{V} \times \mathrm{A}$, Calculated value |
| Power <br> Reactive (Q) | Range | L | 0.0 VAR $\sim \pm 240.0$ VAR |
|  |  | H | 0 VAR $\sim \pm 2600$ VAR |
|  | Accuracy |  | $\sqrt{(V A)^{2}-(W)^{2}}$, Calculated value |
| Crest Factor | Range |  | 0-10.00 |
|  | Accuracy |  | Ap / A, Calculated and displayed to two significant digits |
| Poly-phase mode (364W) for I measurement |  |  | 460XAC |
| Frequency | Range |  | $0.0-1000.0 \mathrm{~Hz}$ |
|  | Accuracy |  | $\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$ ) |
| Voltage | Range |  | $\pm 0.1 \mathrm{~Hz}$ ( $501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$ ) |
|  | Calculated Formula |  | $(\mathrm{A}+\mathrm{B}+\mathrm{C}) / \sqrt{ } 3$, Calculated and displayed to one significant digits |
| Current (RMS) | Range | L | 0.005A~2.400A |
|  |  | H | 2.00A~26.00A |
|  | Calculated Formula | L | $\sum V A$ |
|  |  | H | $\sum V / \sqrt{3}$ |
| Power | Range | L | 0.0W~720.0W |
|  |  | H | 600W~7800W |
|  | Accuracy | L | A Power + B Power + C Power, Calculated value |
|  |  | H |  |
| Power Factor | Range |  | 0-1.000 |
|  | Resolution |  | 0.001 |
|  | Accuracy |  | $\sum^{P}$ Calculated and displayed to three significant digits |
| Power <br> Apparent (VA) | Range | L | 0.0VA~720.0VA |
|  |  | H | 600VA~7800VA |
|  | Calculated Formula | L |  |
|  |  | H | $\sqrt{\left(\sum^{W}\right)^{2}+\left(\sum^{Q}\right)^{2}}$ |
| Power <br> Reactive (Q) | Range | L | 0.0VAR~720.0VAR |
|  |  | H | 600VAR~7800VAR |
|  | Accuracy | L | A VAR + B VAR + C VAR, Calculated value |
|  |  | H |  |
| Single-phase mode (162W) Setting |  |  | 460XAC |
| Voltage | Range |  | 5.0 300 VAC, 150/300 V Auto Range |
|  | Resolution |  | 0.1 V |
|  | Accuracy |  | $\pm$ ( $0.2 \%$ of setting +3 counts) |



## Specifications - 460XAC

| Poly-phase mode (193W) for per phase measurement |  |  | 460XAC |
| :---: | :---: | :---: | :---: |
| Current (peak) | Range |  | 0.0 A~76.0 A |
|  | Accuracy |  | $\begin{gathered} \pm(1 \% \text { of reading }+5 \text { counts }) \text { at } 40.0-70.0 \mathrm{~Hz} \\ \pm(1.5 \% \text { of reading }+10 \text { counts }) \text { at } 70.1-500 \mathrm{~Hz} \\ \pm(1.5 \% \text { of reading }+10 \text { counts }) \text { at } 501-1000 \mathrm{~Hz} \text { and CF }<1.5 \end{gathered}$ |
| Power | Range | L | $0.0 \mathrm{~W} \sim 240.0 \mathrm{~W}$ |
|  |  | H | $200 \mathrm{~W} \sim 2600 \mathrm{~W}$ |
|  | Accuracy | L | $\pm(2 \%$ of reading +15 counts) at $40.0-500 \mathrm{~Hz}$ and PF $\geq 0.2$ <br> $\pm$ ( $2 \%$ of reading +30 counts) at $501-1000 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.5$ |
|  |  | H | $\pm(2 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.2$ <br> $\pm$ ( $2 \%$ of reading +15 counts) at $501-1000 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.5$ |
| Power Factor | Range |  | 0-1.000 |
|  | Accuracy |  | W / VA, Calculated and displayed to three significant digits |
| Power <br> Apparent (VA) | Range | L | $0.0 \mathrm{VA} \sim 240.0 \mathrm{VA}$ |
|  |  | H | 200 VA~2600 VA |
|  | Accuracy |  | VxA, Calculated value |
| Power Reactive (Q) | Range | L | 0.0 VAR~240.0 VAR |
|  |  | H | 0 VAR~2600 VAR |
|  | Accuracy |  | $\sqrt{(\mathrm{VA})^{2}-(\mathrm{W})^{2}}$, Calculated value |
| Crest Factor | Range |  | 0-10.00 |
|  | Accuracy |  | Ap / A, Calculated and displayed to two significant digits |
| Poly-phase mode (193W) for L-1-2 measurement |  |  | $460 \times 4 \mathrm{C}$ |
| Frequency | Range |  | $0.0-1000.0 \mathrm{~Hz}$ |
|  | Accuracy |  | $\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$ ) |
| Voltage | Range |  | 0.0-840.0V |
|  | Accuracy |  | L1 Voltage + L2 Voltage, Calculated and displayed to one significant digits |
| Current (RMS) | Range | L | 0.005A~2.400A |
|  |  | H | $2.00 \sim 26.00 \mathrm{~A}$ |
|  | Calculated Formula | L | $\frac{\Sigma^{V A}}{\Sigma^{V}}$ |
|  |  | H | $\Sigma^{V}$ |
| Power | Range | L | 0.0W~480.0W |
|  |  | H | 400W~5200W |
|  | Accuracy | L | L1 Power + L2 Power, Calculated value |
|  |  | H |  |
| Power Factor | Range |  | 0-1.000 |
|  | Calculated Formula |  | (L1 P + L2 P) / (L1 VA + L2 VA), Calculated and displayed to three significant digits |
| Power <br> Apparent (VA) | Range | L | 0.0W~480.0VA |
|  |  | H | $\pm 400 \mathrm{~W} \sim 5200 \mathrm{VA}$ |
|  | Calculated Formula | L | $\sqrt{\left(\sum^{W}\right)^{2}+\left(\sum^{Q}\right)^{2}}$ Calculated value |
| Power Reactive (Q) | Range | L | $0.0 \mathrm{VAR} \sim \pm 480.0 \mathrm{VAR}$ |
|  |  | H | $\pm 400 \mathrm{VAR} \sim \pm 5200 \mathrm{VAR}$ |
|  | Calculated Formula | L | L1 VAR + L2 VAR, Calculated value |
|  |  | H |  |
| DCOUTPUT |  |  |  |
| Max. Power |  |  | 6000 W |
| Max. Current | $0-210 \mathrm{~V}$ |  | 28.8 A |
|  | $0-420 \mathrm{~V}$ |  | 14.4 A |
| Ripple and Noise (RMS) |  |  | Range: $5-210 \mathrm{~V}<700 \mathrm{mV}$ |
|  |  |  | Range: 5-420 V <1100 mV |
| Ripple and Noise (p-p) |  |  | <4.0 Vp-p |
| DCSEITINGS |  |  |  |
| Voltage | Range |  | 5-210 V / 5-420 V Selectable |
|  | Accuracy |  | $\pm$ ( $0.2 \%$ of setting +3 counts) |
| Current Hi Limit | $5 \mathrm{~V}-210 \mathrm{~V}$ |  | $0.10-28.80 \mathrm{~A}$ |
|  | $5 \mathrm{~V}-420 \mathrm{~V}$ |  | 0.10-14.40 A |
|  | Accuracy |  | $\pm$ ( $2.0 \%$ of setting +2 counts) |
| OC Fold Back Response Time |  |  | <1.4 s |


| DC MEASUREMENT |  | 460XAC |
| :---: | :---: | :---: |
| Voltage | Range | 0.0-420.0 V |
|  | Accuracy | $\pm$ ( $0.2 \%$ of setting +5 counts) |
| Current | Range | 0.05 A~39.00 A |
|  | Accuracy | $\pm$ ( $1 \%$ of reading +5 counts) |
| Power | Range | $0 \mathrm{~W} \sim 7800 \mathrm{~W}$ |
|  | Accuracy | $\pm$ ( $2 \%$ of reading +5 counts) |
| PROTECTION |  |  |
| Software OCP |  | Over Current 110\% of full rated current $>1$ second |
| Output Short Shut Down Speed |  | $<1$ second |
| Software OPP |  | When over Power $105 \sim 110 \%$ of full power $>5$ second. <br> When over Power $>110 \%$ of full power $<1$ second. |
| Software OTP |  | Temperature over 120 degree C on the power amp and PFC heatsink |
| Software OVP | L | When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +5 V <br> When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +15 V <br> When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +20 V |
|  | H | When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +10 V <br> When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +30 V <br> When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +40 V |
| Software LVP | L | When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-5 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-15 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-20 \mathrm{~V}>0.5$ second |
|  | H | When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-10 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-30 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-40 \mathrm{~V}>0.5$ second |
| Reverse Current Protection (RCP) |  | Over 75W |
| caneral |  |  |
| Transient (only for $40 \sim 70 \mathrm{~Hz}$ ) |  | Trans-Volt 0.0-300.0 V Resolution 0.1 V <br> Trans-Site $0^{\circ} \sim 359^{\circ}$ Resolution $1^{\circ}$ <br> Trans-Time 0.5-999.9 mS Resolution 0.1 mS Trans-Cycle 0-9999, 0-Constant |
| Operation Key Feature |  | Soft key, Numeric key, Rotary Knob |
| Remote Input Signal |  | Test, Reset, Interlock, Recall program memory 1 through 7 |
| Remote Output Signal |  | Pass, Fail , Test-in Process |
| Key Lock |  | Yes, Password Driven |
| Memory |  | 50 memories, 9 steps/memory |
| Ext Trigger |  | START / END / BOTH / OFF in the Program mode, Output Signal 5 V, BNC type |
| Alarm Volume Setting |  | Range: 0-9;0 OFFF, 1 is softest volume, 9 is loudest volume. |
| Graphic Display |  | $240 \times 64$ dot resolution Monographic LCD/Contrast 9 Levels 1-9 |
| PFC |  | PF $\geq 0.97$ at Full load |
| Efficiency |  | $\geq 78 \%$ (at Full load) |
| Auto Loop cycle |  | 0 = Continuous, OFF, 2~9999 |
| Over Current Fold Back |  | On/Off, Setting On when output current over setting Hi-A value it will fold back output voltage to keep constant output current is setting Hi -A value, Response time $<1400 \mathrm{~ms}$ |
| Safety Agency |  | CE Listed |
| Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) |  | $430 \times 400.5 \times 500 \mathrm{~mm}$ |
|  |  | $16.93 \times 15.77 \times 19.69$ in |
| Net Weight |  | $125.6 \mathrm{lbs}(57 \mathrm{~kg}$ ) |
| Operation Environment |  | 0-40 $/ 20-80 \% \mathrm{RH}$ |

Specifications subject to change

## Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

